8 GHANDIGARH
cu IINWEIISITY

CHANDIGARH
IVERSITY

UNIVERSITY INSTITUTE OF ENGINEERING

Bachelor of Engineering (Computer Science
& Engineering)

Operating System (CST-328)

Subject Coordinator: Er. Kulvinder Singh(E8770)

DISCOVER . LEARN . EMPOWER



Lecture 7

Threads

* Processes and Threads
e fork() system call

* Thread Approaches

* Types of threads

* Benefits of thread

* Concept of multithreading
* Linux thread management



Wl Processes and Threads

CHANDIGARH
UNIVERSITY

m The unit of dispatching is referred to as a thread or lightweight process

m The unit of resource ownership is referred to asa process or task

m Multithreading - The ability of an OS to support multiple, concurrent paths of
execution within a single process.

* A running process may issue system calls to create new processes:

In UNIX: fork system call



)

&

cu
il Single Threaded Approaches Multithreaded Approaches

m A single thread of execution per process,

: : mA Java run-time
in which the concept of a : :

, , : environment 1S an
thread 1s not recognized, 1s

, example of a system of

referred to as a single- "
hreaded anoroach one  process wi
threa pp multiple threads

m MS-DOS 1s an
example.

--------------------------------------------




Benefits of Threads

Takes less
time to
create a new
thread than a

Process

—
%,.
\ "™
K o

Less timeto
terminate a

thread than a Switching
process between two

threads takes less
time than
switching between

Processes

Threads enhance
efficiency in
communication
between programs




Thread Execution States

Thread operations associated

* The key states with a change in thread state

for a thread are:

arc.
m Running a Slfa"‘lf(n
m Bloc
- Ready m Unblock
m Blocked

m Finish



Types of Threads

IIIIIIII TY

User Level

Thread LT
(U ) Kernel level

Thread (KLT)




User-Level Threads (ULTs)

m All thread management 1s 5 5 5
done by the \ /
application Threads \V User
, Library i

N The kernel 1S not #

aware of the existence Kernel
of threads Space




)

=  Advantages of ULTs

Scheduling can be
application specific %nsany

Thread switching does not
require kernel mode
privileges




x Disadvantages of ULTs

CHANDIGARH
UNIVERSITY

m In a typical OS many system calls are blocking

" as a result, when a ULT executes a system call, not only 1s that thread blocked, but
all of the threads within the process are blocked

m In a pure ULT strategy, a multithreaded application cannot take advantage of
multiprocessing

Jacketing

m Overcoming ULT Disadvantages - converts a blocking system call

into a non-blocking system call

Writing an application
as multiple processes
rather than multiple
threads

10



Kernel-Level Threads (KLTs)

L

User
Space

(b) Pure kernel-level

Kernel
Space

= Thread management is
done by the kernel

= no thread management
1s done by the
application

= Windows 1s an
example of this
approach

11



H
Advantages of KLIs

m The kernel can simultaneously schedule multiple threads from the same process on
multiple processors

m [f one thread 1n a process 1s blocked, the kernel can schedule another thread of the
same process

m Kernel routines can be multithreaded

12



|
&

CHANDIGARH
UNIVERSITY

Disadvantage of KLTs

« H The transfer of control from one thread to another within the same process requires a

mode switch to the kernel
* Thread and process Operation Latencies :

<r—-———dﬂi—-—-——————__q
Kernel-Level
Operation User-Level Threads Threads Processes
{ Null Fork 34 948 11,300
LSignal\Vait 37 441 1.840

T

13

<



W Concept of Multithreading

Multithreading Models

CHANDIGARH
UNIVERSITY

Some operating system provide a combined user level thread and Kernel level
thread facility. Solaris 1s a good example of this combined approach. In a
combined system, multiple threads within the same application can run in parallel
on multiple processors and a blocking system call need not block the entire

process.

Multithreading models are three types:

* Many to many relationship.

B NG

s

CPU

CPU

CPU

CPU

14



One to One Model Many to One Model

Process P1 Process P2 Process P1 Process P2
23 $ $ s
; ;
User Space g ¢ User Space ¢
Theead Ubrary Theead Ubrary Thread Library Thread Library
Kernel Space ' Kernel Space
§ 8§ 4 8 4 s F 3 4 &
0

(P PV PV Py CPU CPU CPU CPU

N



CHANDIGARH
UNIVERSITY

S.N.

User-Level Threads

User-level threads are faster to create and
manage.

Implementation is by a thread library at the
user level.

User-level thread is generic and can run on
any operating system.

Multi-threaded applications cannot take
advantage of multiprocessing.

@l Difference between User-Level & Kernel-Level

Kernel-Level Thread

Kernel-level threads are slower to create and
manage.

Operating system supports creation of Kernel
threads.

Kernel-level thread is specific to the operating
system.

Kernel routines themselves can be
multithreaded.

16

Nl



1)

CHANDIGARH
UNIVERSITY

Linux Thread Management

How are threads implemented 1n Unix / Linux (posix) systems? Any 1deas?

*The same way that we have POSIX systems calls...

*...We also have POSIX threads...

Care to guess how the POSIX threads are named Any 1deas?

Answer : Pthreads

Thread call Description

Pthread create Create a new thread

Pthread _exit Terminate the calling thread

Pthread _join Wait for a specific thread to exit

Pthread _yield Release the CPU to let another thread run
Pthread _aftr_init Create and initialize a thread’s attribute structure
Pthread _attr _destroy | Remove a thread’s atiribute structure

17

I



.

CcU Pt h re a d C re ate Then, how to compile C program with pthread.h library?

CHANDIGARH
UNIVERSITY

#include <stdio.h> The command is:
#include <pthread.h>
* gcc thread.c -o thread -lpthread

/S *Tthread function definition*®/
void* threadFunction(void* args
']

sh-4.3% gcc thread.c -o thread -lpthread
sh-4.3% ./thread

while(1l

printf("I am threadFunction.\n");
¥ Thread created successfully.

5 ] I am threadFunction.
am threadFunction.

/*creatine thread id*/ am threadFunction.

pthread t id; am threadFunction.

int ret;

f*creating thread¥®/ h d .

ret=pthread_ create(&id,NULL ,&threadFunction,NULL) ; t(@ameFum'

if(ret==0){ main function.
printf("Thread created successfully.\n"); main function.

1 . -

5 _ main function.

elsedl main function
printf (" Thread not created.\n"); .
return ©; /*return from main¥*/

}

e am main function.
whie am threadFunction.
k printf("I am main function.\n");

1 and so on.

return o;




#include <pthread.h>
#include <stdioc.h>
#include <stdlib.h>
#define NUM_THREADS 3

" Thread Argument

CHANDIGARH
UNIVERSITY

char *messages[NUM_THREADS];

Pa S S i n g void *PrintHello(void *threadid)
{

long taskid;

sleep(l);

taskid = (long) threadid;

printf("Thread %d: %s\n", taskid, messages[taskid]):;
pthread_exit(NULL);

¥

int main(int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
long taskids[NUM_THREADS];

Creating thread @ int rc, t;
Creat}ng thread 1 messages[@] = "English: Hellc World!™;
Creatlng thread 2 messages[1l] = "French: Bonjour, le monde!™;
. messages[2] = "Spanish: Holz a1 mundo™;
Creat%ng thread 3 messages[3] = "Klingon: Nug neH!™;
Creating thread 4 messages[4] = "German: Guten Tag, Welt!™;
creating thread S messages[5] = "Russian: deavstvuyFe,.mir!";
. messages[6] = "Japan: Sekai e kconnichiwa!™;
Creatlng thread 6 messages[7] = "Latin: Orbis, te saluto!™;
Creating thread 7
Thread @: English: Hello World! f°2§:i?é§?:gM;T:?EADS;t++) )
Thread 1: French: Bonjour, le monde! printf("Creating thread %d\n", t);
Thread 2: Spanish: Holz al mundo ;; ?rzghgead_create(&threads[t], NULL, PrintHello, (void *) taskids[t]);
Thread 3: Klingon: Nuq neH! printf{("ERROR; return code from pthread_create() is %d\n", rc);
Thread 4: German: Guten Tag, Welt! exit(-1);
Thread 5: Russian: Zdravstvytye, mir! 3 ¥
Thread 6: Japan: Sekai e konnichiwa! _
Thread 7: Latin: Orbis, te saluto! pthread_exit(NULL);

¥



)
CU

CHANDIGARH
UNIVERSITY

Conclusion

This Topic enables students to understand What 1s difference between a
thread and a process, thread types, multithreading, thread argument
passing etc.

20



References

* https://www.includehelp.com/c-progsramming-questions/compiling-

program-with-pthread-library-linux.aspx

e https://www.studytonight.com/operating-system/multithreading

 https://computing.linl.gov/tutorials/pthreads/

21

N


https://www.includehelp.com/c-programming-questions/compiling-program-with-pthread-library-linux.aspx
https://www.studytonight.com/operating-system/multithreading
https://computing.llnl.gov/tutorials/pthreads/

